Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
2.
Front Immunol ; 14: 1155770, 2023.
Article in English | MEDLINE | ID: covidwho-20244319

ABSTRACT

Introduction: Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results: We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion: We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/immunology , Interleukin-6 , Post-Acute COVID-19 Syndrome/immunology , SARS-CoV-2
3.
Front Cell Infect Microbiol ; 12: 988604, 2022.
Article in English | MEDLINE | ID: covidwho-20243442

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes
4.
Eur Rev Med Pharmacol Sci ; 27(10): 4782-4791, 2023 May.
Article in English | MEDLINE | ID: covidwho-20240090

ABSTRACT

OBJECTIVE:  The aim of this study was to determine the association of inflammation and immune responses with the outcomes of patients at various stages, and to develop risk stratification for improving clinical practice and reducing mortality. PATIENTS AND METHODS: We included 77 patients with primary outcomes of either death or survival. Demographics, clinical features, comorbidities, and laboratory tests were compared. Linear, logistic, and Cox regression analyses were performed to determine prognostic factors. RESULTS: The average age was 59 years (35-87 years). There were 12 moderate cases (16.2%), 42 severe cases (54.5%), and 23 critical cases (29.9%); and 41 were male (53.2%). Until March 20, 68 cases were discharged (88.3%), and nine critically ill males (11.7%) died. Interleukin-6 (IL-6) levels on the 1st day were compared with IL-6 values on the 14th day in the severe and the critically ill surviving patients (F=4.90, p=0.034, ß=0.35, 95% CI: 0.00-0.10), and predicted death in the critically ill patients (p=0.028, ß=0.05, OR: 1.05, 95% CI: 1.01-1.10). CD4+ T-cell counts at admission decreased the hazard ratio of death (p=0.039, ß=-0.01, hazard ratio=0.99, 95% CI: 0.98-1.00, and median survival time 13.5 days). CONCLUSIONS: The present study demonstrated that IL-6 levels and CD4+ T-cell count at admission played key roles of predictors in the prognosis, especially for critically ill patients. High levels of IL-6 and impaired CD4+t cells are seen in severe and critically ill patients with COVID-19.


Subject(s)
COVID-19 , Female , Humans , Male , Middle Aged , CD4-Positive T-Lymphocytes , Critical Illness , Interleukin-6 , Prognosis , Retrospective Studies , Adult , Aged , Aged, 80 and over
5.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: covidwho-2323608

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
6.
PLoS One ; 18(5): e0285728, 2023.
Article in English | MEDLINE | ID: covidwho-2323197

ABSTRACT

OBJECTIVES: Monitoring of SARS-CoV-2 spread and vaccination strategies have relied on antibody (Ab) status as a correlate of protection. We used QuantiFERON™ (QFN) and Activation-Induced Marker (AIM) assays to measure memory T-cell reactivity in unvaccinated individuals with prior documented symptomatic infection (late convalescents) and fully vaccinated asymptomatic donors (vaccinees). METHODS: Twenty-two convalescents and 13 vaccinees were enrolled. Serum anti-SARS-CoV-2 S1 and N Abs were measured using chemiluminescent immunoassays. QFN was performed following instructions and interferon-gamma (IFN-γ) measured by ELISA. AIM was performed on aliquots of antigen-stimulated samples from QFN tubes. SARS-CoV-2-specific memory CD4+CD25+CD134+, CD4+CD69+CD137+ and CD8+CD69+CD137+ T-cell frequencies were measured by flow cytometry. RESULTS: In convalescents, substantial agreement was observed between QFN and AIM assays. IFN-γ concentrations and AIM+ (CD69+CD137+) CD4+ T-cell frequencies correlated with each other, with Ab levels and AIM+ CD8+ T-cell frequencies, whereas AIM+ (CD25+CD134+) CD4+ T-cell frequencies correlated with age. AIM+ CD4+ T-cell frequencies increased with time since infection, whereas AIM+ CD8+ T-cell expansion was greater after recent reinfection. QFN-reactivity and anti-S1 titers were lower, whereas anti-N titers were higher, and no statistical difference in AIM-reactivity and Ab positivity emerged compared to vaccinees. CONCLUSIONS: Albeit on a limited sample size, we confirm that coordinated, cellular and humoral responses are detectable in convalescents up to 2 years after prior infection. Combining QFN with AIM may enhance detection of naturally acquired memory responses and help stratify virus-exposed individuals in T helper 1-type (TH1)-reactive (QFNpos AIMpos Abshigh), non-TH1-reactive (QFNneg AIMpos Abshigh/low), and pauci-reactive (QFNneg AIMneg Abslow).


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interferon-gamma
7.
Front Immunol ; 14: 1182504, 2023.
Article in English | MEDLINE | ID: covidwho-2327051

ABSTRACT

Introduction: The nonstructural protein 12 (NSP12) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has a high sequence identity with common cold coronaviruses (CCC). Methods: Here, we comprehensively assessed the breadth and specificity of the NSP12-specific T-cell response after in vitro T-cell expansion with 185 overlapping 15-mer peptides covering the entire SARS-CoV-2 NSP12 at single-peptide resolution in a cohort of 27 coronavirus disease 2019 (COVID-19) patients. Samples of nine uninfected seronegative individuals, as well as five pre-pandemic controls, were also examined to assess potential cross-reactivity with CCCs. Results: Surprisingly, there was a comparable breadth of individual NSP12 peptide-specific CD4+ T-cell responses between COVID-19 patients (mean: 12.82 responses; range: 0-25) and seronegative controls including pre-pandemic samples (mean: 12.71 responses; range: 0-21). However, the NSP12-specific T-cell responses detected in acute COVID-19 patients were on average of a higher magnitude. The most frequently detected CD4+ T-cell peptide specificities in COVID-19 patients were aa236-250 (37%) and aa246-260 (44%), whereas the peptide specificities aa686-700 (50%) and aa741-755 (36%), were the most frequently detected in seronegative controls. In CCC-specific peptide-expanded T-cell cultures of seronegative individuals, the corresponding SARS-CoV-2 NSP12 peptide specificities also elicited responses in vitro. However, the NSP12 peptide-specific CD4+ T-cell response repertoire only partially overlapped in patients analyzed longitudinally before and after a SARS-CoV-2 infection. Discussion: The results of the current study indicate the presence of pre-primed, cross-reactive CCC-specific T-cell responses targeting conserved regions of SARS-CoV-2, but they also underline the complexity of the analysis and the limited understanding of the role of the SARS-CoV-2 specific T-cell response and cross-reactivity with the CCCs.


Subject(s)
COVID-19 , Common Cold , Humans , CD4-Positive T-Lymphocytes , Peptides , SARS-CoV-2 , T-Lymphocytes
8.
N Engl J Med ; 388(18): 1680-1691, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2316637

ABSTRACT

BACKGROUND: Idiopathic CD4 lymphocytopenia (ICL) is a clinical syndrome that is defined by CD4 lymphopenia of less than 300 cells per cubic millimeter in the absence of any primary or acquired cause of immunodeficiency. Some 30 years after its original identification, ICL has remained a disease of obscure cause, with limited evidence with respect to its prognosis or management, despite diagnostic and therapeutic innovations. METHODS: We evaluated the clinical, genetic, immunologic, and prognostic characteristics of 108 patients who were enrolled during an 11-year period. We performed whole-exome and targeted gene sequencing to identify genetic causes of lymphopenia. We also performed longitudinal linear mixed-model analyses of T-cell count trajectories and evaluated predictors of clinical events, the response to immunization against coronavirus disease 2019 (Covid-19), and mortality. RESULTS: After the exclusion of patients with genetic and acquired causes of CD4 lymphopenia, the study population included 91 patients with ICL during 374 person-years of follow-up. The median CD4+ T-cell count among the patients was 80 cells per cubic millimeter. The most prevalent opportunistic infections were diseases related to human papillomavirus (in 29%), cryptococcosis (in 24%), molluscum contagiosum (in 9%), and nontuberculous mycobacterial diseases (in 5%). A reduced CD4 count (<100 cells per cubic millimeter), as compared with a CD4 count of 101 to 300 cells, was associated with a higher risk of opportunistic infection (odds ratio, 5.3; 95% confidence interval [CI], 2.8 to 10.7) and invasive cancer (odds ratio, 2.1; 95% CI, 1.1 to 4.3) and a lower risk of autoimmunity (odds ratio, 0.5; 95% CI, 0.2 to 0.9). The risk of death was similar to that in the age- and sex-adjusted general population, but the prevalence of cancer was higher. CONCLUSIONS: Among the study patients, ICL continued to be associated with increased susceptibility to viral, encapsulated fungal, and mycobacterial diseases, as well as with a reduced response to novel antigens and an increased risk of cancer. (Funded by the National Institute of Allergy and Infectious Diseases and the National Cancer Institute; ClinicalTrials.gov number, NCT00867269.).


Subject(s)
COVID-19 , Immunologic Deficiency Syndromes , Lymphopenia , Opportunistic Infections , Primary Immunodeficiency Diseases , Humans , COVID-19/complications , Immunologic Deficiency Syndromes/complications , Lymphopenia/etiology , CD4-Positive T-Lymphocytes , CD4 Lymphocyte Count , Primary Immunodeficiency Diseases/complications
9.
Ter Arkh ; 94(11): 1294-1302, 2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2316261

ABSTRACT

BACKGROUND: Clinical and laboratory signs of hyperinflammatory response in COVID-19 may serve as prognostic markers of the disease scenario. In real-world practice, there is an unmet need to determine the optimal timing of identifying predictors of SARS-CoV-2 adverse outcomes in the context of patient stratification to improve the effectiveness of anti-IL-6R therapy. Lymphopenia has a high informative value for the adverse prognosis of the COVID-19 course; however, the informative value of CD3+CD4+, CD3+CD8+ T-cell count remains questionable. In addition to lymphocyte phenotyping, a six-criterion additive scale (cHIS) was used in the study. AIM: To study the informative value of CD3+CD4+, CD3+CD8+ T-cell phenotyping and cHIS scale as predictors of severe COVID-19 when using IL-6R blockers. MATERIALS AND METHODS: A single-center, bi-directional study included 179 patients with SARS-CoV-2-induced community-acquired pneumonia with severe acute inflammation and progressing respiratory failure. Data were obtained from electronic patient records. Anti-IL-6R was administered in addition to standard therapy in the cohorts. The following disease outcomes were used to determine the informative value of the studied parameters: mortality and hospital discharge. Inflammatory markers were measured before and after administering anti-IL-6R, followed by monitoring. Statistical analysis was performed using SPSS (version 25.0). The quantitative indices were described using the median and interquartile range. Quantitative indices were compared using nonparametric methods: Mann-Whitney U-test, Kruskal-Wallis test. The groups were compared by qualitative characteristics using Pearson's chi-square test. Correlation analysis of quantitative indicators was performed using Spearman rank correlation. For additional analysis of the cHIS scale, odds ratio and decision tree methods were used. Differences were considered statistically significant at р≤0,05. RESULTS: Immunophenotyping of lymphocytes as a predictor of the severe SARS-CoV-2 requires further research. The cHIS scale may be implemented in routine clinical practice due to its high predictive value. A cHIS score of ≥2 on the first day of admission is a critical threshold for intensification and revision of therapy. The prognosis with cHIS is logically relevant in the first three days of hospitalization. CONCLUSION: The main result of the study is the definition of target groups of patients with community-acquired SARS-CoV-2 pneumonia for the IL-6R-blockers, considering the timing of their effective use in real clinical practice.


Subject(s)
COVID-19 , Receptors, Interleukin-6 , Humans , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/diagnosis , Hospitals , Receptors, Interleukin-6/antagonists & inhibitors , SARS-CoV-2 , Lymphocyte Count
10.
Front Immunol ; 14: 1157702, 2023.
Article in English | MEDLINE | ID: covidwho-2316203

ABSTRACT

Introduction: Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods: We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results: All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions: While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.


Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , Humans , Immunophenotyping , Leukocytes, Mononuclear , Follow-Up Studies , COVID-19/metabolism , Metabolome
11.
Nat Immunol ; 24(6): 979-990, 2023 06.
Article in English | MEDLINE | ID: covidwho-2315011

ABSTRACT

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-Lymphocytes
12.
Clin Infect Dis ; 75(4): 596-603, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2319267

ABSTRACT

BACKGROUND: Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a zoonotic betacoronavirus. The development of effective vaccines and control measures requires a thorough understanding of the immune response to this viral infection. METHODS: We investigated cellular immune responses up to 5 years after infection in a cohort of 59 MERS survivors by performing enzyme-linked immunospot assay and intracellular cytokine staining after stimulation of peripheral blood mononuclear cells with synthetic viral peptides. RESULTS: Memory T-cell responses were detected in 82%, 75%, 69%, 64%, and 64% of MERS survivors from 1-5 years post-infection, respectively. Although the frequency of virus-specific interferon gamma (IFN-γ)-secreting T cells tended to be higher in moderately/severely ill patients than in mildly ill patients during the early period of follow-up, there was no significant difference among the different clinical severity groups across all time points. While both CD4+ and CD8+ T cells were involved in memory T-cell responses, CD4+ T cells persisted slightly longer than CD8+ T cells. Both memory CD4+ and CD8+ T cells recognized the E/M/N proteins better than the S protein and maintained their polyfunctionality throughout the period examined. Memory T-cell responses correlated positively with antibody responses during the initial 3-4 years but not with maximum viral loads at any time point. CONCLUSIONS: These findings advance our understanding of the dynamics of virus-specific memory T-cell immunity after MERS-coronavirus infection, which is relevant to the development of effective T cell-based vaccines.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Immunologic Memory , Leukocytes, Mononuclear , Memory T Cells , Survivors
13.
Sci Immunol ; 6(59)2021 05 25.
Article in English | MEDLINE | ID: covidwho-2300367

ABSTRACT

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vß21.3 T cell receptor ß chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vß21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vß21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adult , Child , Child, Preschool , Cytokines/blood , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , SARS-CoV-2/immunology
14.
J Med Virol ; 95(4): e28743, 2023 04.
Article in English | MEDLINE | ID: covidwho-2300963

ABSTRACT

Safety profiles and humoral responses to inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been previously assessed, but cellular immune responses to inactivated SARS-CoV-2 vaccines remain understudied. Here, we report the comprehensive characteristics of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by the BBIBP-CorV vaccine. A total of 295 healthy adults were recruited, and SARS-CoV-2-specific T-cell responses were detected after stimulation with overlapping peptide pools spanning the entire length of the envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins. Robust and durable CD4+ (p < 0.0001) and CD8+ (p < 0.0001) T-cell responses specific to SARS-CoV-2 were detected following the third vaccination, with an increase in specific CD8+ T-cells, compared to CD4+ T-cells. Cytokine profiles showed that interferon gamma and tumor necrosis factor-α were predominantly expressed with the negligible expression of interleukin (IL)-4 and IL-10, indicating a Th1- or Tc1-biased response. Compared to E and M proteins, N and S activated a higher proportion of specific T-cells with broader functions. The predominant frequency of the N antigen (49/89) was highest for CD4+ T-cell immunity. Furthermore, N19-36 and N391-408 were identified to contain dominant CD8+ and CD4+ T-cell epitopes, respectively. In addition, N19-36 -specific CD8+ T-cells were mainly effector memory CD45RA cells, whereas N391-408 -specific CD4+ T-cells were mainly effector memory cells. Therefore, this study reports comprehensive features of T-cell immunity induced by the inactivated SARS-CoV-2 vaccine BBIBP-CorV and proposes highly conserved candidate peptides which may be beneficial in vaccine optimization.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , CD8-Positive T-Lymphocytes , SARS-CoV-2 , CD4-Positive T-Lymphocytes , COVID-19/prevention & control , Peptides , Vaccines, Inactivated
15.
J Immunol ; 210(11): 1687-1699, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2300707

ABSTRACT

Although CD4+CD25+FOXP3+ regulatory T (TREG) cells have been studied in patients with COVID-19, changes in the TREG cell population have not been longitudinally examined during the course of COVID-19. In this study, we longitudinally investigated the quantitative and qualitative changes in the TREG cell population in patients with COVID-19. We found that the frequencies of total TREG cells and CD45RA-FOXP3hi activated TREG cells were significantly increased 15-28 d postsymptom onset in severe patients, but not in mild patients. TREG cells from severe patients exhibited not only increased proliferation but also enhanced apoptosis, suggesting functional derangement of the TREG cell population during severe COVID-19. The suppressive functions of the TREG cell population did not differ between patients with severe versus mild COVID-19. The frequency of TREG cells inversely correlated with SARS-CoV-2-specific cytokine production by CD4+ T cells and their polyfunctionality in patients with mild disease, suggesting that TREG cells are major regulators of virus-specific CD4+ T cell responses during mild COVID-19. However, such correlations were not observed in patients with severe disease. Thus, in this study, we describe distinctive changes in the TREG cell population in patients with severe and mild COVID-19. Our study provides a deep understanding of host immune responses upon SARS-CoV-2 infection in regard to TREG cells.


Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , Humans , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Interleukin-2 Receptor alpha Subunit , Forkhead Transcription Factors
16.
Ann Lab Med ; 43(5): 451-460, 2023 09 01.
Article in English | MEDLINE | ID: covidwho-2298916

ABSTRACT

Background: The response to vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) varies depending on comorbidities. This study evaluated the clinical and immunological factors affecting the humoral response of patients with end-stage renal disease (ESRD) to the BNT162b2 vaccine. Methods: Humoral immunity was evaluated in 54 ESRD patients using serum levels of anti-receptor-binding domain (RBD) and neutralizing antibodies (NAbs), measured by a chemiluminescent immunoassay 30 (T1), 60 (T2), and 120 (T3) days after the second vaccine dose. The results were correlated to baseline patient T- and B-lymphocyte subpopulations determined by flow cytometry. Results: The proportion of seroconverted patients based on the NAb titer decreased from 83.3% at T1 to 53.7% at T3. Age was negatively correlated to the NAb titer at T1 and T2. Patients receiving hemodiafiltration had higher NAb titers at T3. Diabetes was associated with a lower response rate at T3. Univariate analysis revealed a positive correlation between the naïve CD4 T-lymphocyte population and RBD titer at T1 and the NAb titer at T3, with no association observed with naïve CD8 T lymphocytes. NAb titers at T3 were significantly correlated with late-differentiated CD4 T lymphocytes and terminally differentiated effector memory cells re-expressing CD45RA (TEMRA) CD8 T lymphocytes. RBD levels were positively correlated with naïve and memory B-lymphocyte counts at T3. Conclusions: Age, diabetes, and hemodialysis prescription had significant impacts on the response to vaccination. T- and B-lymphocyte phenotypes are major determinants of the humoral response potency to SARS-CoV-2 vaccination with BNT162b2 in patients with ESRD.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Humans , Renal Dialysis , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/prevention & control , Kidney Failure, Chronic/therapy , Vaccination , CD4-Positive T-Lymphocytes , Antibodies, Viral
17.
Clin Immunol ; 251: 109342, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303610

ABSTRACT

BACKGROUND: Information regarding the heterologous prime-boost COVID vaccination has been fully elucidated. The study aimed to evaluate both humoral, cellular immunity and cross-reactivity against variants after heterologous vaccination. METHODS: We recruited healthcare workers previously primed with Oxford/AstraZeneca ChAdOx1-S vaccines and boosted with Moderna mRNA-1273 vaccine boost to evaluate the immunological response. Assay used: anti-spike RBD antibody, surrogate virus neutralizing antibody and interferon-γ release assay. RESULTS: All participants exhibited higher humoral and cellular immune response after the booster regardless of prior antibody level, but those with higher antibody level demonstrated stronger booster response, especially against omicron BA.1 and BA.2 variants. The pre-booster IFN-γ release by CD4+ T cells correlates with post-booster neutralizing antibody against BA.1 and BA.2 variant after adjustment with age and gender. CONCLUSIONS: A heterologous mRNA boost is highly immunogenic. The pre-existing neutralizing antibody level and CD4+ T cells response correlates with post-booster neutralization reactivity against the Omicron variant.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , T-Lymphocytes , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes , Antibodies, Viral
18.
Viral Immunol ; 35(7): 491-502, 2022 09.
Article in English | MEDLINE | ID: covidwho-2297458

ABSTRACT

Lymphocytes are the main orchestrators that regulate the immune response in SARS-COV-2 infection. The exhaustion of T lymphocytes is a contributing factor to lymphopenia, which is responsible for the COVID-19 adverse outcome. However, it is still not demonstrated on a large scale, including cancer patients. Peripheral blood samples were obtained from 83 SARS-CoV2 infected cancer patients, and 29 COVID-19 infected noncancer patients compared to 28 age-matched healthy controls. Lymphocyte subsets were assessed for CD3, CD4, CD8, CD56, PD-1, and CD95 using flow cytometry. The data were correlated to the patients' clinical features, COVID-19 severity and outcomes. Lymphopenia, and decreased CD4+ T cells and CD8+ T cells were significantly observed in COVID-19 cancer and noncancer patients compared to the control group (p < 0.001, for all). There was a significantly increased expression of CD95 and PD-1 on the NK cells, CD4+ T cells, and CD8+ T cells in COVID-19 cancer and noncancer patients in comparison to the control group. The increased expression of CD95 on CD8+ T cells, as well as the increased expression of PD-1 on CD8+ T cells and NK cells are significantly associated with the severity of COVID-19 infection in cancer patients. The increased expression of CD95 and PD-1 on the CD4+ T cells, CD8+ T cells, and NK cells was observed significantly in nonsurviving patients and those who were admitted to the intensive care unit in COVID-19 cancer and noncancer patients. The increased expression of PD-1 and CD95 could be possible prognostic factors for COVID-19 severity and adverse outcomes in COVID-19 cancer and noncancer patients.


Subject(s)
COVID-19 , Lymphopenia , Neoplasms , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lymphocyte Subsets , Lymphopenia/metabolism , Neoplasms/complications , Neoplasms/metabolism , Programmed Cell Death 1 Receptor , RNA, Viral/metabolism , SARS-CoV-2 , T-Lymphocyte Subsets
19.
Cell Rep Med ; 2(7): 100355, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-2283611

ABSTRACT

The emergence of SARS-CoV-2 variants with evidence of antibody escape highlight the importance of addressing whether the total CD4+ and CD8+ T cell recognition is also affected. Here, we compare SARS-CoV-2-specific CD4+ and CD8+ T cells against the B.1.1.7, B.1.351, P.1, and CAL.20C lineages in COVID-19 convalescents and in recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. The total reactivity against SARS-CoV-2 variants is similar in terms of magnitude and frequency of response, with decreases in the 10%-22% range observed in some assay/VOC combinations. A total of 7% and 3% of previously identified CD4+ and CD8+ T cell epitopes, respectively, are affected by mutations in the various VOCs. Thus, the SARS-CoV-2 variants analyzed here do not significantly disrupt the total SARS-CoV-2 T cell reactivity; however, the decreases observed highlight the importance for active monitoring of T cell reactivity in the context of SARS-CoV-2 evolution.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL